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Abstract 1 

In this study, we develop an easy-to-compute statistic for detecting examinees’ 2 

aberrant response times in large-scale computer-based assessments. Using this statistic, 3 

a response time is flagged as aberrant when it is longer or shorter than expected. The 4 

flagged response times are summarized to indicate examinees’ abnormal test behaviors, 5 

such as pre-knowledge, rapid guessing and item memorization. A simulation study was 6 

conducted to evaluate this method’s performance in various conditions. Results showed 7 

that the proposed statistic approximately followed a normal distribution in the null 8 

condition, performed equivalently well to van der Linden & Guo’s (2008) Bayesian 9 

procedure in detecting aberrant response times, and reduced computational burden 10 

monumentally. A high-stake educational assessment was used to illustrate its 11 

application. 12 

Key words: test security breach, response times, abnormal test behavior 13 
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Easy-to-Compute Response Times Based Statistics for Detecting Aberrant Behaviors of 1 

Test-takers 2 

Introduction 3 

A breach to test security may have serious implications for the psychometric integrity of 4 

the reported test scores and on the interpretations and consequences of those scores 5 

(Standards for Educational and Psychological Testing, 2014; p. 225). Statistical methods 6 

developed for test security purposes have become increasingly popular (Drasgow, 7 

Levine & Williams, 1985; Reise & Due, 1991; Impara et al., 2005; van der Linden & Guo, 8 

2008; Marianti & et al., 2014; Li & Smith, 2015; Fox & Marianti, 2017). So far, statistical 9 

methods based on examinees’ responses are the most studied, such as erasure analysis 10 

indices, answer copying indices and person fit indices. Applying statistical methods for 11 

test security purposes provides methods that are highly efficient but low cost, as they 12 

serve as a screening tool before more expensive investigations are conducted. 13 

Compared to item responses, the study of response times is relatively new. According 14 

to recent research, response times can provide valuable information for improving test 15 

development, test security, as well as score use and interpretability. For example, Wise 16 

& Kong (2015) studied examinees’ engagement during tests based on response time 17 

patterns. Fox & Marianti (2016) explore the relationship between response speed and 18 

accuracy.  It is well known that traditional person fit indices examine the congruence 19 

between an item response pattern and a specified item response theory model (Reise & 20 



Easy-to-Compute Statistics for Detecting Aberrant Test Behaviors 

3 
 

Due, 1991). Similarly, aberrant test behaviors can be identified by comparing expected 1 

response times and observed response times. Recently, using latent variable modeling 2 

of response times, several methods have been developed for detecting aberrance in 3 

response time patterns (van der Linden & Guo, 2008; van der Linden, 2009). However, 4 

these methods have the shortcomings of being highly complex to implement and 5 

computationally ineffective. The purpose of this study is to develop easy-to-compute 6 

statistics for detecting aberrant response time patterns in large-scale assessments. 7 

The practical value of the three proposed statistics are illustrated and expanded in the 8 

paper. So far, no adequate approach has been developed to detect aberrant response 9 

time patterns during testing. Most of the current methods remain in the psychometric 10 

lab and are not widely used in practice. Either the field needs to develop new software 11 

to implement the more complex procedures based on response time models, or develop 12 

an easy-to-compute index, so that existing testing software can employ these methods 13 

without additional effort.  14 

Data Forensic Methods and Response Time Modeling 15 

Post-hoc data analysis for test security purposes has long existed. Early studies focused 16 

on the similarities between paired examinees’ answers, indices of answer copying, and 17 

the likelihood of test-takers’ responses with well-known test theory models. 18 

Nonetheless, test security breaches remain a significant issue in large-scale assessments 19 

since many existing statistical methods are only based on examinees’ responses and a 20 
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large number are highly complex. Recently, with the popularity of computer-based 1 

assessments, more information can be captured during the testing process. Therefore, 2 

new statistics have been proposed for this purpose.  3 

Early studies focused on developing statistics used for detecting aberrant item response 4 

patterns, which are commonly known as person-fit indices (Reise & Due, 1991). The 5 

shift to computer-based testing allows examinees’ response times to be easily recorded, 6 

however, and the response time data can be used for test security analyses.  van der 7 

Linden & Guo (2008) proposed a Bayesian procedure to identify aberrant response time 8 

patterns, specifically those indicating pre-knowledge and item memorization in 9 

adaptive testing. Their method was based on a hierarchical latent response time model. 10 

In their first step, latent variables and item parameters are estimated based on a set of 11 

real data using Monte-Carlo Markov-Chain (MCMC). In the second step, the posterior 12 

distribution of each test-taker’s response time is calculated. In the third step, the 13 

observed response time for each test-taker on each item is compared with the posterior 14 

distribution. A p value is computed, assuming that the posterior distribution is log-15 

normal. 16 

Qian et al. (2016) applied the Bayesian procedure to detect item pre-knowledge and 17 

potentially compromised items in two computer-based large-scale licensure 18 

examinations. The results indicated this procedure was helpful in monitoring aberrant 19 
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examinee behaviors, as well as enhancing future item writing. However, this is the only 1 

publication that could be found applying the Bayesian procedure.  2 

Marianti & et al. (2014) developed another set of statistics for detecting aberrant test 3 

behaviors based on the lognormal response time model. The statistics were derived 4 

from the well-known person fit statistic 𝑙𝑧 (Reise & Due, 1991). The log likelihoods of 5 

the response time patterns were used to evaluate the fit of a response time pattern to a 6 

specified model.  Furthermore, Fox & Marianti (2017) developed a person fit index with 7 

a hierarchical response time model, taking into consideration both response time and 8 

response accuracy. Additionally, Wang & Gong (2015) proposed a hierarchical mixture 9 

response time model for detecting examinees’ engagement during testing, however this 10 

may be harmful to test validity. All these methods have their own merits in different 11 

ways. Nonetheless, the complexity of the methods based on latent variable modeling 12 

constrain them from being widely used in practice. Additionally, these methods are 13 

often computationally demanding.  14 

Response Time Models 15 

Using response time to explore and interpret test-takers’ testing behaviors and 16 

outcomes is not necessarily a new approach. Thissen (1983) developed an extended item 17 

response theory model, taking into account person speed and ability simultaneously. 18 

Wang & Hansen (2005) developed a four-parameter logistic response time model, 19 

incorporating response time information to predict the probability of answering an item 20 
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correctly. With these models, however, the aberrance of response time patterns is not 1 

known.   2 

One of the popular response time models is van der Linden’s (2006) lognormal model. 3 

The model assumes that test-takers’ speed remains constant during testing, and that 4 

examinees answer each item independently. It contains three latent variables: 𝜏𝑗 5 

represents the speed of test taker j, 𝛽𝑖 is the time intensity of item i, and 𝛼𝑖 is a 6 

discrimination parameter. This model is often presented as a lognormal density for the 7 

distribution of test-takers’ response times (𝑅𝑇𝑖𝑗): 8 

𝑓(𝑅T𝑖𝑗; 𝜏𝑗 , 𝛼𝑖, 𝛽𝑖) =
𝛼𝑖

𝑅𝑇𝑖𝑗√2𝜋
𝑒{−

1
2
[𝛼𝑖(𝑙𝑜𝑔𝑅𝑇𝑖𝑗−(𝛽𝑖−𝜏𝑗))]

2}.  

(1) 

The advantages of this model include that, when it is combined with an item response 9 

model, a hierarchical response time model is formed. Not only could we study the 10 

relationship among latent variables, the information from response times might also be 11 

used for improving item calibration and test scoring.  12 

van der Linden and other researchers have applied the above-mentioned response time 13 

model in many aspects. For example, van der Linden & Guo (2008) applied the 14 

hierarchical lognormal response time model for detecting aberrant test-takers’ aberrant 15 

test behaviors in computer adaptive testing (CAT); van der Linden (2009) proposed 16 

another bivariate lognormal response time model for the detection of collusion between 17 

test-takers. van der Linden (2008) used this model to improve the accuracy of item 18 

selection in a CAT design.  19 
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As mentioned above, the idea of detecting aberrant test behaviors is not new. Any 1 

differences between the expected response pattern and the observed response pattern 2 

or the expected response time pattern and the observed response time pattern could 3 

imply an aberrant test behavior. The difficulty comes from how we detect the 4 

aberrances efficiently and accurately. Although van der Linden and Guo’s (2008) 5 

Bayesian estimation can provide relative accurate latent variable estimates, the 6 

estimation process is computationally demanding.  In the following section a simplified 7 

approach is proposed for detecting test-takers’ aberrant behavior. Not only is this 8 

approach easy to implement in any testing software, it requires much less computation.  9 

  The Proposed Statistics 10 

Basic Summative Statistics and the Indicator of Aberrance 11 

Suppose there are N examinees and n items. The response time of examinee j to item i is 12 

indicated by 𝑅𝑇𝑖𝑗. First, the average response time to item i is indicated by 𝑅𝑇𝑖.̅̅ ̅̅ ̅, which is 13 

𝑅𝑇𝑖.̅̅ ̅̅ ̅ =
∑ 𝑅𝑇𝑖𝑗
𝑁
1

𝑁
. 

(2) 

Furthermore, the total test time of examinee j is indicated by 𝑅𝑇𝑗 = ∑ 𝑅𝑇𝑖𝑗
𝑛
1 . The average 14 

total test time among N examinees is: 15 

𝑅𝑇𝑗̅̅ ̅̅ =
∑ 𝑅𝑇𝑗
𝑁
1

𝑁
= ∑𝑅𝑇𝑖.̅̅ ̅̅ ̅

𝑛

1

, 
(3) 
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which is also equal to the sum of the average response time on each item. Thereby, the 1 

expected response time for examinee j on item i could simply be the average response 2 

time across all persons and all items: 𝑅𝑇𝑖𝑗̂ =
𝑅𝑇𝑗̅̅ ̅̅

𝑛⁄ .  3 

An aberrance indicator is defined as the difference between the observed response time 4 

𝑅𝑇𝑖𝑗 and the expected value 𝑅𝑇𝑖𝑗̂ : 5 

𝐴𝑏𝑒𝑟𝑟𝑎𝑛𝑐𝑒 = (𝑅𝑇𝑖𝑗 − 𝑅𝑇𝑖𝑗̂ ). (4) 

Statistic I: Standardized Aberrance 6 

Assuming that examinees’ response time to each item follows a normal distribution, the 7 

simplest statistic for detecting aberrant response times can be obtained by standardizing 8 

the index of aberrance in equation 4: 9 

𝑍0 =
𝑅𝑇𝑖𝑗 − 𝑅𝑇𝑖𝑗̂

𝑆.𝐷. (𝑅𝑇𝑖.)
. 

(5) 

𝑍0 will be used as a baseline for index comparison. It is conjectured that it won’t work 10 

well, as response times don’t often follow a normal distribution. 11 

Statistic II: Standardized the Aberrance using Logarithm of Response Times 12 

It is commonly shown that students’ response times follow a log-normal distribution. 13 

Therefore, we take the logarithm of the response time matrix, and compute a 14 

standardized residual index like this: 15 

𝑍𝑙 =
log⁡(𝑅𝑇𝑖𝑗) − log⁡(𝑅𝑇𝑖𝑗̂ )

𝑆. 𝐷. (log⁡(𝑅𝑇𝑖.))
. 

(6) 
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Notice that both 𝑍0 and 𝑍𝑙 have a strong assumption that all test-takers have an equal 1 

speed during testing. This assumption can often be violated in the real world. Following 2 

the idea of a standardized response time, a relative standardized response time is 3 

proposed. This new statistic considers person speed in the computation. 4 

Statistic III: Standardized Logarithm Aberrance with Person Speed  5 

Van der Linden (2006, 2009, 2011) defined person speed as latent variables in his 6 

lognormal RT model. As we know, person speed is defined as the item’s time loading 7 

divided by response times on the item: 𝜏𝑗 =
𝛽𝑖

log⁡(𝑅𝑇𝑖𝑗)
, where 𝜏𝑗 is assumed to be constant 8 

across all items.  9 

The definition of person speed used here follows the same structure. However, instead 10 

of using the latent variables, simple summative statistics are used. Assuming that 11 

person speed is a constant parameter across all items. Examinees’ speed is quantified as 12 

the average total test time divided by the total test time of examinee j: 13 

𝑆𝑝𝑒𝑒𝑑𝑗 =⁡
𝑅𝑇𝑗̅̅ ̅̅

𝑅𝑇𝑗
. 

(7) 

The longer the time an examinee takes for a test, the lower the speed is. With speed 14 

computed, the expected response time of examinee j to item i is obtained, which is the 15 

average response time on item i divided by person speed: 16 

𝑅𝑇𝑖𝑗̂ =
𝑅𝑇𝑖.̅̅ ̅̅ ̅

𝑆𝑝𝑒𝑒𝑑𝑗
. 

(8) 
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Similarly, when the response times are transferred onto the logarithmic scale, person 1 

speed can be calculated by log(𝑅𝑇𝐽)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ − log(𝑅𝑇𝑗) . Furthermore, considering random 2 

errors reflected in the variances of response times on each item, person speed is 3 

calculated by the weighted average response time residual: 4 

𝑠𝑝𝑒𝑒𝑑𝑗 =⁡
∑

(log(𝑅𝑇𝑖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ − log(𝑅𝑇𝑖𝑗))
𝑣𝑎𝑟(𝑙𝑜𝑔𝑅𝑇𝑖)

𝑛
𝑖=1

∑
1

𝑣𝑎𝑟(𝑙𝑜𝑔𝑅𝑇𝑖)
𝑛
𝑖=1

. 

(9) 

The expected value of log(𝑅𝑇𝑖𝑗) after adjusting for person speed is (log(𝑅𝑇𝑖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝑠𝑝𝑒𝑒𝑑𝑗). 5 

The variance of log(𝑅𝑇𝑖𝑗) is the total variance minus the group (person) variance: 6 

𝑣𝑎𝑟(𝑙𝑜𝑔𝑅𝑇𝑖) − 𝑣𝑎𝑟(𝑠𝑝𝑒𝑒𝑑𝑗). (10) 

Thereby, the standardized value of aberrance taking into consideration person speed 7 

variance is as follows: 8 

𝑍𝑠 =
log(𝑅𝑇𝑖𝑗) − (log(𝑅𝑇𝑖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝑠𝑝𝑒𝑒𝑑𝑗)

√𝑣𝑎𝑟(𝑙𝑜𝑔𝑅𝑇𝑖) − 𝑣𝑎𝑟(𝑠𝑝𝑒𝑒𝑑𝑗)
. 

(11) 

In the following two sections, we use a simulation study and an empirical study to 9 

examine the performance of these three proposed statistics.  10 

Simulation Study 11 

A simulation study was conducted to examine the performance of the proposed 12 

statistics in various conditions. In the simulation study, the proposed three statistics 13 

based on Z-score method were compared with two statistics based on van der Linden & 14 

Guo’s latent variable modeling method. Furthermore, four factors, including proportion 15 
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of compromised items, sample size, test length, as well as the population aberrance 1 

rates, might have an influence on the performance of these statistics. The effects of the 2 

four factors were examined in this study.  3 

Simulation Design 4 

Four factors were considered in the simulation study. Sample size and number of items 5 

in the test were considered because both are critical features of any assessment. A pilot 6 

study showed that the proposed statistic performed equivalently well in various 7 

conditions of sample sizes (500, 1000, 10000). Therefore, in the current simulation study, 8 

only the small sample size (N=500) condition was considered. Additionally, the 9 

aberrance rates of items (proportion of compromised items), and the aberrance rates in 10 

the sample (proportion of test-takers who have aberrant test behaviors) were 11 

considered based on previous research (Marianti & et al., 2014). The details of these 12 

factors are listed in Table 1. 13 

Data Generation 14 

1) Generating observed response times 15 

Response times were generated based on a lognormal model (van der Linden, 2006): 16 

log⁡(𝑅𝑇𝑖𝑗) = ⁡𝛽𝑖 − 𝜏𝑗 + 𝜀𝑖𝑗⁡⁡,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝜀𝑖𝑗~𝑁(0, 1 𝛼𝑖
2⁄ ) (12) 

where 𝛽𝑖, 𝜏𝑗, and 𝛼𝑖 were obtained from empirical data analysis. The longest response 17 

time for an item is constrained to be 20 minutes, and the shortest response time on one 18 

item is constrained to be 1 second, according to students’ observed response times for 19 
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multiple choice items in state assessments. Outliers, e.g., an extremely long response 1 

time or short response time, were not a factor of interest, therefore were not simulated 2 

in the current study. 3 

2) Generating aberrant response times 4 

Aberrant RTs were generated by three steps. First, a proportion of items were chosen 5 

according to the factor ARI in the simulation design. Second, a proportion of examinees 6 

were randomly selected from the sample according to the factor ARS in the simulation 7 

design. Third, with true person parameters and item parameters, the lognormal 8 

distribution of response times for the selected person on the chosen item was known. 9 

An aberrant RT is generated by taking a value of the cut points which are located at 10 

three standard deviations from the mean (half negative and half positive). 11 

Statistics of Interest 12 

The proposed three easy-to-compute statistics (𝑍0, 𝑍l,⁡𝑍s) are of major interest in this 13 

study. In addition, two statistics based on van der Linden’s (2006) lognormal response 14 

time model are computed for comparison. 15 

After fitting the generated response time matrix with the lognormal model, parameter 16 

estimates 𝛽�̂�, 𝛼�̂� and 𝜏�̂� can be obtained. Assuming that these parameter estimates were 17 

the true parameters, the expected response time for examinee j on item i is (𝛽�̂� − 𝜏�̂�), and 18 

the variance of response times on this item as (1 (𝛼�̂�)2
⁄ ). A standardized residual index 19 

for detecting aberrance will be the fourth statistical index: 20 
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𝑍𝑚 =
log⁡(𝑅𝑇𝑖𝑗) − (𝛽�̂� − 𝜏�̂�)

1
𝛼�̂�
⁄

. 
(13) 

The reason for introducing 𝑍𝑚 is that it has the same structure as the proposed statistic 1 

𝑍𝑠. The only difference is that 𝑍𝑚 uses parameters estimated from latent variable 2 

modeling for persons’ speed and items’ time loadings. 3 

The other statistic is a posterior predictive checking method, taking into consideration 4 

the posterior distribution of the person speed parameters. This method was first 5 

introduced by van der Linden & Guo (2008), known as a Bayesian procedure. Based on 6 

the posterior distribution of response time of person j on item i, the p values and 7 

standardized residuals were calculated by comparing the observed response time to 8 

this posterior distribution.  9 

These two indices are comparable to the proposed easy-to-compute statistics above, as 10 

both of them follow a standard normal distribution. The difference lies in whether the 11 

estimated parameters from latent variable modeling or the observed response times are 12 

used directly to approximate the expected response times.  13 

Evaluation Criteria 14 

To determine whether a response time pattern is aberrant, the five statistics are 15 

calculated for each observed response time. RTs with extreme values will be flagged if 16 

the statistic is higher than 1.96 or lower than -1.96. After this process, each examinee 17 

will have or not have several flagged RTs. The proportion of flagged RTs of an 18 
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examinee is computed. This number is then compared with a designated cut (varies 1 

with total number of items, see attachment). The power of the statistics is compared 2 

with respect to the following criteria: 3 

Probability of detection: proportion of examinees flagged with aberrant RT patterns, 4 

among the actual number of examinees with true aberrant RT patterns (as designed in 5 

data generation). It is often regarded as a sensitivity index in statistics: 6 

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛⁡𝑟𝑎𝑡𝑒 = ⁡
𝑁 ∗ 𝑃𝑡𝑟𝑢𝑒⁡𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑁 ∗ (𝑃𝑡𝑟𝑢𝑒⁡𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑃𝑓𝑎𝑙𝑠𝑒⁡𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒)
, 

(14) 

Precision of detection: Proportion of examinees with true aberrant RT patterns, among 7 

the number of examinees flagged as having an aberrant RT pattern. The equation is as 8 

following: 9 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⁡𝑜𝑓⁡𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 = ⁡
𝑁 ∗ 𝑃𝑡𝑟𝑢𝑒⁡𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑁 ∗ (𝑃𝑡𝑟𝑢𝑒⁡𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑃𝑓𝑎𝑙𝑠𝑒⁡𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒)
. 

(15) 

Results of Simulation Study 10 

1) Type I error 11 

In the null conditions, the asymptotic distributions of the proposed statistics are 12 

examined. As the statistics follow a standard normal distribution, when the 𝛼 level was 13 

set to be 0.025 on each side, the empirical rejection rates at both sides should be close to 14 

0.025.  15 

In Table 2, the empirical rejection rates for 𝑍𝑙 and⁡𝑍𝑠 approximate 0.025 on both the left 16 

side (𝛼 = −0.025) and the right side (𝛼 = 0.025). However, the empirical rejection rates 17 
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for 𝑍0 were not close to 0.025 on both sides. The large value of empirical rejection rates 1 

on the right side shows that the distribution of 𝑍0 was positively skewed. 2 

In addition, flagging rules for individuals were used to check how likely an individual 3 

with no aberrance will be falsely flagged by the statistics. Results in Table 2 show that 4 

𝑍𝑠 has zero probability of randomly flagging any examinee when no aberrant response 5 

time pattern exists. On the contrary, both 𝑍0 and 𝑍𝑙 flagged 6%-11% examinees 6 

incorrectly by chance.  7 

2) Power 8 

The power of the proposed statistics was tested in various alternative conditions, where 9 

aberrant response times were generated. The probability of detection (P.d.) and 10 

precision of detection (P) of statistics 𝑍0, 𝑍𝑙 and⁡𝑍𝑠 were compared with van der Linden 11 

& Guo’s (2008) Bayesian procedure and 𝑍𝑚.  12 

From Table 3, it is obvious that 𝑍𝑠 performed better than 𝑍0 and⁡𝑍𝑙. It had a higher 13 

precision of detection in all the conditions, and had a higher probability of detection in 14 

most conditions. When the number of items were small (n=20), and the proportion of 15 

compromised items was low (10%), which meant that only 2 items were compromised 16 

in the test, all statistics had very low (<= 0.08) probability of detection. However, the 17 

precision of detection for 𝑍𝑠 was much higher than those of 𝑍0 and⁡𝑍𝑙. As the number of 18 

items increased and the proportion of compromised items increased, both the detection 19 

rates and precision of detection for 𝑍𝑠 grew. For example, when the number of items 20 
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was 70, aberrance rates in the sample were 0.05, and the proportion of compromised 1 

items was 25%, the detection rate grew to 97%, and the detection precision grew to 98%.  2 

Furthermore, compared to the two approaches based on latent variable modeling (van 3 

der Linden and Guo’s Bayesian procedures and 𝑍𝑚), 𝑍𝑠 performed equivalently well in 4 

all the conditions we tested. The detection rates and precision of detection of the 5 

proposed new statistic were close to those of van der Linden and Guo’s (2008) Bayesian 6 

procedure. In the following section, some factors are discussed that exert an influence 7 

on the performance of the proposed statistic.  8 

3) The Influence of Factors  9 

To better illustrate how each of the statistics’ performance were influenced by the three 10 

factors: the proportion of compromised items, test length and the proportion of 11 

examinees with aberrant response times, the following figures are displayed. 12 

Figure 1 shows the influence of aberrance rates of items on the probability of detection 13 

and precision when the number of items was increased from 20 to 70. The aberrance 14 

rate in the sample was fixed to 10%. When the percentage of compromised items was 15 

10%, all five indices had low probability of detection. However, when the percentage of 16 

compromised items increased from 10% to 25%, three of the indices’ probability of 17 

detecting aberrant response time patterns improved adequately for the short test (n=20), 18 

and improved rapidly for longer tests (n=40 and n=70).⁡𝑍𝑚 had the highest probability 19 

of detection in the tested conditions, while 𝑍𝑠 and the Bayesian procedure followed very 20 
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closely. As a comparison, 𝑍0 and 𝑍𝑙 didn’t improve significantly when the percentage of 1 

compromised items increased.  2 

The bottom three plots in Figure 1 show that, 𝑍𝑠, the Bayesian procedure and 𝑍𝑚 also 3 

performed similarly with respect to precision of detection in various conditions. When 4 

the aberrance rates of items increased to 25%, the precision of detection improved 5 

rapidly for the short test (n=20). For longer tests, the precision of these three detection 6 

indices was high even if the aberrance rate of items was low (10%), therefore the 7 

increased rates were small. When the aberrance rate of items reached 25%, no matter 8 

how many items there were, their precision of detection was close to 1. On the contrary, 9 

𝑍0 and 𝑍𝑙 had very low precision of detection across all condition levels, with slight 10 

improvement when the aberrance rates of items increased to 25%.  11 

Figure 2 shows the influence of aberrance rates of sample on the probability and 12 

precision of detection. The top plots in Figure 2 show that when the aberrance rates of 13 

sample increased from 5% to 10%, the three statistics with high detection rates (𝑍𝑠, 14 

Bayesian procedure, and 𝑍𝑚) had lower probabilities of detecting aberrant response 15 

time patterns. The other two statistics (𝑍0 and 𝑍𝑙) had equivalently low probability of 16 

detection in both conditions. On the contrary, the bottom three plots of Figure 2 show 17 

that with the increased aberrance rate in the sample, all statistics’ precision of detection 18 

improved slightly.  19 
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Both Figure 1 and Figure 2 show the influence of test length on the performance of the 1 

statistics: with the increased total number of items, the probability and precision of 2 

detection improved for all statistics. In particular, the precision of detection increased to 3 

almost 1 with a test length of 70, even if the percentages of compromised items and the 4 

percentages of aberrant examinees were relatively small.  5 

4) Summary 6 

A simulation study was carried out to evaluate the performance of the proposed 7 

statistics compared to an existing Bayesian procedure (van der Linden & Guo, 2008). In 8 

the null condition, two of the three new statistics, 𝑍𝑙 and⁡𝑍𝑠, approximately follow a 9 

standard normal distribution. The simplest statistic 𝑍0 turns out to be extremely skewed 10 

to the right. Specifically, the left-tail p values were close to 0, while the right-tail p 11 

values approximated 0.05.  12 

A most interesting finding was that, compared with the two procedures based on latent 13 

variable modeling, 𝑍𝑠 performed equivalently well in detecting response time 14 

aberrance. Among the proposed easy-to-compute statistics, 𝑍𝑠 performed much better 15 

than 𝑍0 and⁡𝑍𝑙. Not only did it have higher precision of detection in all the simulation 16 

conditions, it also had a higher probability of detection in most conditions.  17 

Moreover, several factors, especially the aberrance rates in the sample and the 18 

proportion of compromised items, exerted a significant influence on the performance of 19 

the proposed statistics. The more compromised items the test had, the less the 20 
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examinees with aberrant response time patterns, the more likely that an aberrant 1 

response time pattern could be detected (high probability of detection). However, the 2 

precision of detection increased with both the number of compromised items and the 3 

proportion of examinees with aberrant response time patterns.  4 

It was also found that the compromised items will always have more aberrant RTs than 5 

the other non-compromised items. In other words, based on the aberrance flagging of 6 

RTs, the compromised items were flagged correctly.  7 

Empirical Study 8 

Examinees’ response times in a computer-based Math test consisting of 58 items were 9 

analyzed to illustrate the application of the proposed statistics. This test was part of a K-10 

12 state testing program from the 2016-17 school year. The sample included 6,827 Grade 11 

6 students. Demographically, the sample was diverse. Results from the real data 12 

analysis are discussed below. 13 

We found that examinees’ response times to most items approximately follow a 14 

lognormal distribution. One item was removed from analysis as its response time did 15 

not fit the lognormal distribution. The QQ-plot in Figure 3 shows that the total response 16 

time on the remaining 57 items was well approximated by a lognormal distribution, 17 

even though the slightly uplifted right tail indicated this distribution was a little heavy 18 

tailed.   19 
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Next, we computed the proposed statistics, as well as statistics based on Guo and van 1 

der Linden (2008)’s Bayesian procedure. Only a small proportion of aberrant response 2 

time patterns were detected (Table 4). With a close look at these aberrant response time 3 

patterns, possible reasons of the detected aberrance include speededness towards the 4 

end, time management strategies, and rapid guessing. For example, one examinee spent 5 

1-5 seconds through all 57 items, which indicates a rapid guessing behavior. It appeared 6 

that no test-taker was engaged in any potential cheating behavior during testing.  7 

Results in Table 4 show that about 5% of the examinees’ response times were flagged by 8 

our statistic of interest (𝑍s). According to the property of standard normal distribution, 9 

this probability is very close to the significance level 0.05. This finding indicates that no 10 

significant aberrance was found in the empirical data set. In addition, it was noticed 11 

that more positive response times were flagged than the negative response times by 𝑍0 12 

statistic, which further proved a positively skewed distribution of response times. For 13 

𝑍l, 𝑍s, and the Bayesian procedure, the difference between positive and negative 14 

flagging decreased to a small amount. Moreover, the extent to which two statistics flag 15 

the same examinee’s response time pattern was checked.  16 

In Table 5, we found that, among the flagged individuals, more than 88% were flagged 17 

simultaneously by 𝑍𝑠 and the Bayesian procedure, even if none of the examinees were 18 

identified with cheating behaviors. It is very likely that, when real aberrant response 19 
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times exist, 𝑍𝑠 could be used to detect the aberrance as accurately as the Bayesian 1 

procedure, which was also proved in the simulation study. 2 

Additionally, the percentages of flagged examinees by each statistic in each school were 3 

computed. Schools were flagged when the percentage of aberrant examinees was higher 4 

than the state-level percentage (bottom row in Table 4). Results show that 23%, 29%, 5 

26%, 27% and 26% schools were flagged by Index 𝑍𝟎, 𝑍𝑙, 𝑍𝑠, Bayesian procedure, and 𝑍𝑚 6 

respectively. Specifically, 96% of 596 schools in the state were simultaneously flagged 7 

by both 𝑍𝑠 and the Bayesian procedure. Meanwhile, only 63% of schools in the studied 8 

state were flagged by both 𝑍0 and the Bayesian procedure at the same time. 9 

Furthermore, the criterion of flagging a school should be higher than the state-level 10 

average rate in practice. When the flagging cut increased to 0.2, 99% of schools were 11 

flagged by both 𝑍𝑠 and the Bayesian procedure at the same time. 12 

Discussion 13 

Results from the simulation study demonstrated that the proposed easy-to-compute 𝑍s 14 

statistic performed well in null and alternative conditions. Specifically, in the conditions 15 

tested, 𝑍s had similar probability and precision of detecting aberrant response time 16 

patterns as van der Linden & Guo’s (2008) Bayesian procedure. On the contrary, the 17 

other two simpler statistics proposed in this paper (𝑍0⁡𝑎𝑛𝑑⁡𝑍l) do not have adequate 18 

power in detecting aberrant response times. Furthermore, it was shown that test 19 
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lengths, proportion of aberrant examinees in the sample, as well as the number of 1 

compromised items all exert an influence on the performance of the indices. 2 

van der Linden & Guo (2008) argued that the Bayesian procedure accounts for the 3 

presence of estimation error in any of the parameters of the psychometric model (e.g., 4 

ability parameters). Our method, on the other hand, eliminated any estimation error 5 

because no latent variable needs to be estimated. Moreover, we noticed that the 6 

Bayesian procedure had a slightly higher probability of detection than 𝑍m, which is also 7 

based on the lognormal response time model. However, the probability and precision of 8 

detection of 𝑍s are always close to van der Linden & Guo’s (2008) Bayesian procedure.  9 

Another important finding was that, when the test was short (20 items) and the 10 

proportion of compromised items was low, all the statistics had a low probability of 11 

detecting aberrant response time patterns. The precision of detection was lower or equal 12 

to 54%. Therefore, it is recommended that no individual-level detection should be 13 

carried out in this situation. Only when the test length is adequate (40 items), are the 14 

detection results by the proposed 𝑍s statistic sufficiently reliable. 15 

Additionally, empirical data analysis showed that 𝑍s could flag a large proportion of 16 

examinees flagged as aberrance by the Bayesian procedure. When the statistics were 17 

aggregated at the school level, 𝑍s and the Bayesian procedure almost flagged the same 18 

schools even if the aberrance rates were very low in the real data. This finding provided 19 

further evidence that 𝑍s would be a useful and powerful statistic in practice. 20 
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This study has its limitations. First, the data for the simulation study was generated 1 

with a lognormal response time model. This doesn’t take into consideration all the 2 

features of a real response time data set. For example, test-takers’ response time on one 3 

item might not follow a lognormal distribution and their response speed might vary 4 

during testing. Secondly, only one set of empirical data set was used to illustrate the 5 

new statistics. This limits the number of types of aberrant test behaviors we detected in 6 

this study. The performance of the proposed statistics need to be examined in more 7 

situations. Furthermore, future study should consider improving the current data 8 

forensic methods by incorporating more information sources, detecting aberrant 9 

examinee behaviors using item response, response time and answer changing patterns.  10 
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Appendix 1 

Table 1  2 

Simulation Study Design 3 

Factors Conditions 

Sample size (N) 500 

Number of items (n) 20, 40, 70 

Aberrance rates of items (ARI) 5%, 10% 

Aberrance rates in sample (ARS) 10%, 25% 

*The factors are fully crossed in a 1 × 3 × 2 × 2 design with 500 replications in each 4 

condition. 5 

Table 2  6 

Type I error rates and the probability of false alarm  7 

n 
𝑍0 

 
𝑍𝑙 

 
𝑍𝑠 

𝛼−0.025 𝛼0.025 𝑅𝑓𝑙𝑎𝑔𝑔𝑒𝑑  𝛼−0.025 𝛼0.025 𝑅𝑓𝑙𝑎𝑔𝑔𝑒𝑑  𝛼−0.025 𝛼0.025 𝑅𝑓𝑙𝑎𝑔𝑔𝑒𝑑 

20 .000 .053 .08  .023 .023 .06  .026 .024 .00 

40 .000 .052 .09  .029 .021 .09  .026 .024 .00 

70 .000 .052 .11  .027 .022 .10  .026 .024 .00 

 8 

 9 

 10 

 11 
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Table 3  1 

Statistical power at individual level 2 

n 

A.R. 

in 

Sample 

A.R. 

of 

Items 

Proposed Simple Statistics Latent Model Statistics 

𝑍0 𝑍𝑙 𝑍𝑠 Bayes 𝑍𝑚 

P.d. P P.d. P P.d. P P.d. P P.d. P 

20 

.05 
.10 .08 .06 .08 .06 .05 .49 .03 .54 .04 .50 

.25 .12 .09 .13 .10 .52 .94 .46 .97 .54 .95 

.10 
.10 .08 .11 .07 .12 .03 .62 .02 .63 .03 .60 

.25 .11 .17 .12 .18 .26 .95 .20 .97 .26 .96 

40 

.05 
.10 .13 .06 .11 .07 .17 .75 .13 .80 .16 .77 

.25 .19 .09 .21 .12 .86 .95 .86 .97 .88 .96 

.10 
.10 .12 .12 .11 .13 .09 .79 .07 .81 .08 .79 

.25 .17 .17 .20 .22 .58 .98 .55 .99 .62 .98 

70 

.05 
.10 .11 .06 .13 .06 .34 .90 .30 .92 .33 .91 

.25 .18 .10 .25 .12 .97 .98 .97 .99 .97 .98 

.10 
.10 .12 .12 .13 .13 .15 .91 .12 .91 .14 .91 

.25 .16 .17 .23 .20 .84 .99 .83 .99 .85 .99 

 3 

Table 4 4 

Percentages of aberrance flagged by different statistics in empirical data analysis 5 

 Aberrance 

Type 
𝒁𝟎 𝒁𝒍 𝒁𝒔 

Bayesian 

procedure 
𝒁𝒎 

Flagged 

response 

times 

All 3.6% 5.0% 5.0% 5.0% 4.9% 

Positive 3.6% 2.8% 2.8% 2.8% 2.8% 

Negative 0% 2.2% 2.2% 2.2% 2.1% 

Flagged 

Examinees 
 All 3.2% 5.8% 4.5% 4.5% 4.3% 

 6 
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Table 5 1 

 Similarity of examinees’ flagging with different statistics 2 

 
𝒁𝟎 𝒁𝒍 𝒁𝒔 

Bayesian 

procedure 

𝒁𝒍 34.8% -- -- -- 

𝒁𝒔 11.8% 45.5% -- -- 

Bayesian 

procedure 
11.8% 46.9% 88.4% -- 

𝒁𝒎 11.8% 47.5% 89.6% 93.9% 

 3 

  4 
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 1 

Figure 1. Probability of detection (top) and precision of detection (bottom) of five 2 

statistics across test length and aberrance rates of items 3 
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 1 

Figure 2. Probability of detection (top) and precision of detection (bottom) of all statistics 2 

across test length and aberrance rates of sample 3 
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 1 

Figure 3. Quantile-quantile plot for total response times on the test in Empirical data 2 

analysis 3 
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Appendix 1 

Table A1 2 

The likelihoods of randomly flagging a student at or above different cut levels (fixed number of 3 

items) 4 

Number of Items as the Cut Level 

n 1 2 3 4 5 6 7 10 15 20 

20 64.15% 26.42% 7.55% 1.59% 0.26% 0.03% 0.00% 0.00% 0.00% 0.00% 

30 78.54% 44.65% 18.78% 6.08% 1.56% 0.33% 0.06% 0.00% 0.00% 0.00% 

40 87.15% 60.09% 32.33% 13.81% 4.80% 1.39% 0.34% 0.00% 0.00% 0.00% 

50 92.31% 72.06% 45.95% 23.96% 10.36% 3.78% 1.18% 0.02% 0.00% 0.00% 

60 95.39% 80.84% 58.26% 35.27% 18.03% 7.87% 2.97% 0.07% 0.00% 0.00% 

70 97.24% 87.08% 68.63% 46.61% 27.21% 13.72% 6.04% 0.25% 0.00% 0.00% 

80 98.35% 91.39% 76.94% 57.16% 37.11% 21.08% 10.53% 0.65% 0.00% 0.00% 

90 99.01% 94.33% 83.36% 66.42% 47.03% 29.48% 16.39% 1.45% 0.00% 0.00% 

100 99.41% 96.29% 88.17% 74.22% 56.40% 38.40% 23.40% 2.82% 0.01% 0.00% 

120 99.79% 98.45% 94.25% 85.56% 72.18% 55.85% 39.37% 7.86% 0.10% 0.00% 

 5 

Table A1 shows the probability of randomly flagging an individual when the cut 6 

increases from 1 to 20 aberrant RTs, for test lengths of 20-120 items. For example, when 7 

the test only contains 20 items, an individual with 6 aberrant RTs will have a low false 8 

positive rate (0.03%, only 3 students will be randomly flagged in 10,000 students). 9 

However, when the test has 70 items, a cut of 6 will have a high false positive rate 10 

(13.72%, 1,372 students will be randomly flagged in 10,000 students). By this table, a cut 11 

for flagging individuals can be determined after the total number of aberrant RTs for 12 

each individual is computed.  13 


